Exam Seat No:_____

Enrollment No:_____

C.U.SHAH UNIVERSITY

WADHWAN CITY

University (Winter) Examination -2013 Subject Name: -Classical Mechanics

Course Name :M.Sc(Physics) Sem-I Duration :- 3:00 Hours Marks :70 Date : 18/12/2013

Instructions:-

(1) Attempt all Questions of both sections in same answer book / Supplementary.

(2) Use of Programmable calculator & any other electronic instrument is prohibited.

(3) Instructions written on main answer Book are strictly to be obeyed.

(4)Draw neat diagrams & figures (If necessary) at right places.

(5) Assume suitable & Perfect data if needed.

SECTION-I

Q.1	Write answers of the following Questions	
	1. Give the difference between Co-ordinate system and Frame of reference.	2
	2. Define Scattering cross-section.	2
	3. How the Bertrand ¹ s theorem and perturbation of orbits are useful in astronomical units?	2
	4. What is the maximum centrifugal acceleration value of earth ?	1
Q.2	A. Derive the differential equation of orbit.	5
	B. Show that the angular acceleration is the same in Fixed and Rotating frames.	5
	C. Write a note on Virial theorem.	4
Q.2	A. Derive the Lagrange's equations from Hamilton // sprinciple.	5
	B. Find the equation of orbit and classify different types of orbits on the basis of energy and eccentricity.	5
	C. What is coriolis force? Explain it in brief.	4
Q.3	A. With the neat diagram discuss the Scattering phenomenon and obtain the expression for differential Scattering cross-section as $\sigma(\theta) = \frac{1}{4} \frac{(zze^2)}{2\pi} \operatorname{cosec}^4 \frac{\theta}{2}$	7
	B. Derive the Inverse square law of force.	7
0.3	A. Discuss Bertrand ¹ s theorem with necessary mathematical expression.	7
	B. Using Lagrange's equation for r,obtain the following integral $t=\int_{r_0}^{r} \frac{dr}{\sqrt{\frac{2}{m}[E-V(r)-\frac{l^2}{2mr^2}}}$	7
	SECTION-II	
Q.4	Write answers of the following Question.	
	1. For Poisson 's brackets and prove [X, X]=0.	2

- 2. With Example explain stable and unstable equilibrium in small oscillations.
- 3. If the generating function is $F_2=q_ip_i$ then prove $p_i=P_i$, $Q_i=q_i$ and k=H. 2

4. Prove
$$[u,p_j] = \frac{u}{q_j}$$

2

1

Q.5	A.	For small oscillations obtain Lagrange ¹ s equation as	5
		$\sum_{i} T_{ik} \ddot{q}_{i} + \sum_{i} V_{ik} q_{i} = 0$	
		What are V_{ik} and T_{ik} ?	
	B.	What are normal co-ordinates? Explain briefly.	5
	C.	Explain Gauge transformation.	4
		OR	
Q.5	A.	Discuss the Eigen Vectors and Eigen Frequencies using two coupled pendulum.	5
	B.	Give the Example of Harmonic Oscillator.	5
	C.	Define the Poisson ¹ s brackets and prove the following	4
		$[p_j,H],H]=\ddot{p}_i$	
Q.6	A.	What is Canonical transformation ? Obtain the transformation equation	7
	_	for generating function F_1 .	_
	В.	Derive Hamilton-Jacobi equation and obtain its solution.	7
		OR	
Q.6	A.	Derive expressions for Small Oscillations of particle on string.	7
	B.	Obtain Hamilton 's characteristics function and find the relation in	7
		which the time is as a co-ordinate and Hamiltonian is its conjugate	
		momentum.	
		"BOHERING YOUR DESTRIC	

