\qquad

C.U.SHAH UNIVERSITY

WADHWAN CITY

University (Winter) Examination -2013
Course Name :M.Sc(Physics) Sem-I
Subject Name: -Classical Mechanics

Marks :70
Date : 18/12/2013

Instructions:-

(1) Attempt all Questions of both sections in same answer book / Supplementary.
(2) Use of Programmable calculator \& any other electronic instrument is prohibited.
(3) Instructions written on main answer Book are strictly to be obeyed.
(4)Draw neat diagrams \& figures (If necessary) at right places.
(5) Assume suitable \& Perfect data if needed.

SECTION-I

Q. 1 Write answers of the following Questions

1. Give the difference between Co-ordinate system and Frame of 2 reference.
2. Define Scattering cross-section.
3. How the Bertrand ${ }^{1}$ s theorem and perturbation of orbits are useful in 2 astronomical units?
4. What is the maximum centrifugal acceleration value of earth ? 1
Q. 2 A. Derive the differential equation of orbit. 5
B. Show that the angular acceleration is the same in Fixed and Rotating 5 frames.
C. Write a note on Virial theorem.
Q. 2 A. Derive the Lagrange's sequations from \#am ilton I s principle. 5
B. Find the equation of orbit and classify different types of orbits on the 5 basis of energy and eccentricity.
C. What is coriolis force? Explain it in brief. 4
Q. 3 A. With the neat diagram discuss the Scattering phenomenon and obtain 7 the expression for differential Scattering cross-section as

$$
\sigma(\theta)=\frac{1}{4}\left(\frac{z z b^{2}}{2 E}\right) \operatorname{cosec}^{4} \frac{\theta}{2}
$$

B. Derive the Inverse square law of force.
Q. 3 A. Discuss Bertrand's theorem w ith necessary m athem atical expression. 7
B. Using Lagrange's equation for r,obtain the follow ing integral 7

$$
\mathrm{t}=\int_{r_{0}}^{r} \frac{d r}{\sqrt{\frac{2}{m}\left[E-V(r)-\frac{l^{2}}{2 m r^{2}}\right.}}
$$

SECTION-II

Q. 4 Write answers of the following Question.

1. For Poisson's brackets and prove $[X, X]=0$. 2
2. With Example explain stable and unstable equilibrium in small 2 oscillations.
3. If the generating function is $\mathrm{F}_{2}=\mathrm{q}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}$ then prove $\mathrm{p}_{\mathrm{i}}=\mathrm{P}_{\mathrm{i}}, \mathrm{Q}_{\mathrm{i}}=\mathrm{q}_{\mathrm{i}}$ and $\mathrm{k}=\mathrm{H}$. 2
4. Prove $\left[\mathrm{u}, \mathrm{p}_{\mathrm{j}}\right]=\frac{a}{q_{j}}$
Q. 5 A. For small oscillations obtain Lagrange ${ }^{1}$ s equation as 5
$\sum_{j} T_{j k} \ddot{q}_{j}+\sum_{j} V_{j k} \mathrm{q}_{\mathrm{j}}=0$
What are $V_{j k}$ and $T_{j k}$?
B. What are normal co-ordinates? Explain briefly. 5
C. Explain Gauge transformation. 4
OR
Q. 5 A. Discuss the Eigen Vectors and Eigen Frequencies using two coupled 5 pendulum.
B. Give the Example of Harmonic Oscillator. 5
C. Define the Poisson's brackets and prove the follow ing 4
$\left.\left[\dot{p}_{j}, \mathrm{H}\right], \mathrm{H}\right]=\ddot{p}_{i}$
Q. 6 A. What is Canonical transformation ? Obtain the transformation equation 7 for generating function F_{1}.
B. Derive Hamilton-Jacobi equation and obtain its solution. 7
OR
Q. 6 A. Derive expressions for Small Oscillations of particle on string. 7
B. Obtain Hamilton's characteristics function and find the relation in 7 which the time is as a co-ordinate and Hamiltonian is its conjugate momentum.

